KakNauchit.ru  
 
 
 
Главная arrow Решение задач arrow Подготовка детей к решению задач алгебраическим способом
загрузка...
Подготовка детей к решению задач алгебраическим способом

Сравнение алгебраического и арифметического путей решения задач показывает, что значение более раннего ознакомления с алгебраическим способом не сводится только к облегчению решения задач. Важной особенностью алгебраического способа решения задач является то, что при его использовании центр тяжести работы переносится с вычислительной стороны на анализ зависимости между данными и искомым; он требует осмысливания математической структуры задачи в целом (в то время как в процессе арифметического решения внимание ученика поглощается отдельными частными задачами). Алгебраические операции поэтому способствуют более высокому уровню обобщения.

В этой связи очевидно, что сознательному усвоению алгебраического способа решения сложных задач должна предшествовать специальная подготовительная работа, целью которой являлось бы постепенное формирование у детей соответствующих умений. Такая алгебраическая пропедевтика может проводиться начиная с I класса, с момента ознакомления детей с решением простейших задач на сложение и вычитание.

Дети систематически должны обучаться четкому различению того, что известно из условий задачи, и того, что неизвестно, что нужно узнать. При записи .решения этих задач может сразу же вводиться буквенное обозначение неизвестного числа (X), и дети должны научиться выражать неизвестное через известные величины с помощью знаков арифметических действий.

Покажем на примере, как могут разъяснять весь ход решения, сами ученики.

Повторяя задачу, предложенную учителем, ученик сразу же выделяет известные и неизвестные величины. Например: «Мы знаем, что у Коли было 5 марок и что папа дал ему еще 1 марку. Нужно узнать, сколько всего марок стало у Коли». Дальнейшие рассуждения ведутся так: «Обозначу неизвестное х — это столько всего марок стало у Коли. Мы знаем, что у Коли было 5 марок и папа дал ему еще 1 марку. Значит, марок стало больше. Нужно к пяти маркам прибавить одну марку. Пишу: X = 5 + 1. Теперь подсчитаю, чему равно неизвестное число (считает устно и записывает), X = 6. Всего у Коли стало 6 марок».

Из описанного хода решения видно, что в данном случае ни введение х для обозначения неизвестного, ни составление уравнения сами по себе ничуть не облегчают решения задачи (на первых порах это, может быть, даже несколько осложняет работу учеников). Однако оценивать целесообразность такой работы нужно по тому, что она дает для подготовки учеников к овладению более общим (алгебраическим) способом решения сложных задач.

С этой точки зрения значение ее велико. В самом деле, при таком подходе с самого начала решение задачи четко делится в сознании детей на следующие основные этапы:

  1. выделение и разграничение данных и искомых,
  2. обозначение искомого с помощью буквы и запись в виде определенного математического выражения зависимости между искомым и данными,
  3. нахождение численного значения неизвестного.
Все это важнейшие моменты в деле подготовки к составлению уравнений.

В первом же классе целесообразно знакомить детей и с так называемыми обратными (или косвенными) задачами на сложение и вычитание (задачи на нахождение одного из двух слагаемых по данным сумме и другому слагаемому, на нахождение уменьшаемого по данным вычитаемому и разности и др.).

Решение в I классе обратных (косвенных) задач будет способствовать выработке у детей умения рассматривать всю задачу в целом, сознательно производить выбор действия на основе полноценного анализа условий. Одновременное рассмотрение прямых и обратных задач исключает возможность выработки штампа в решении, уводит детей от. «установления механической связи между отдельными словами в тексте задачи и арифметической операцией» (Н. А. Менчинская).

Введение задач рассматриваемого вида в программу I класса способствует подготовке учеников к использованию метода составления уравнений, и ценно в том отношении, что при решении обратных задач для обозначения неизвестного также используется х.

Решение задачи на нахождение одного из двух слагаемых по данным сумме и второму слагаемому, например, записывается так: X + 3 = 7, Х = 7 — 3, Х = 4. Переход от Х + 3 = 7 к Х = 7 - 3 осуществляется на основе анализа той конкретной жизненной ситуации, которая описана в решаемой задаче. Например, решается задача: В коробке было несколько карандашей. Учительница положила в коробку еще 3 карандаша. Всего в коробке стало 7 карандашей. Сколько карандашей было в коробке сначала? Ученик объясняет, что для ответа на вопрос нужно взять все 7 карандашей и отложить (отнять) те 3 карандаша, которые положила учительница. Тогда останутся карандаши, которые лежали в коробке вначале.

Много раз решая задачи этого вида и выполняя обратное задание на составление задачи по данному решению, ученики подготавливаются к осознанию в общей форме связей между компонентами арифметических действий. Осознание же этих связей является необходимой предпосылкой для перехода к решению уравнений первой степени с одним неизвестным.

 
< Пред.   След. >
Что новенького




Кто на сайте
Сейчас на сайте:
Гостей - 2
Реклама
 

© 2009 - 2010 KakNauchit.ru
Использование материалов сайта разрешается только
при наличии письменного разрешения администрации сайта
KakNauchit.ru